Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Using the principle of mathematical induction to show identities III

Math 1年 前
Solution to Elementary Analysis: The Theory of Calculus Second Edition Section 1 Exercise 1.3


Solution: The $n$-th proposition is
$$
P_n: 1^3+2^3+\cdots+n^3=(1+2+\cdots+n)^2.
$$ Then $P_1$ asserts $1^3=1^2$ which is clearly true and we have the induction basis.
Now we assume $P_n$ is true, that is the equation
\begin{equation}\label{eq:1-1-3-1}
1^3+2^3+\cdots+n^3=(1+2+\cdots+n)^2.
\end{equation} We would like to show $P_{n+1}$ is true based on $P_n$. To do that, we shall use the following identity from Example 1
\begin{equation}\label{eq:1-1-3-2}
1+2+\cdots+n=\frac{1}{2}n(n+1).
\end{equation} We add both sides of \eqref{eq:1-1-3-1} by $(n+1)^3$ and obtain
\begin{align*}
&\ 1^3+2^3+\cdots +n^3+(n+1)^3\\
=&\ (1+2+\cdots+n)^2+(n+1)^3\\
\text{use \eqref{eq:1-1-3-2}}=&\ \frac{1}{4}n^2(n+1)^2+(n+1)^3\\
=&\ \frac{1}{4}n^2(n+1)^2+\frac{1}{4}(n+1)^2(4n+4)\\
=&\ \frac{1}{4}(n+1)^2(n^2+4n+4)\\
=&\ \frac{1}{4}(n+1)^2(n+2)^2\\
=&\ \left(\frac{1}{2}(n+1)\big((n+1)+1\big)\right)^2\\
\text{use \eqref{eq:1-1-3-2}}=&\ \big(1+2+\cdots+n+(n+1)\big)^2.
\end{align*} Therefore $P_{n+1}$ is true if $P_n$ is true. By the principle of mathematical induction, we make the conclusion that $P_n$ is true for all positive integers $n$.

#Identity#Induction
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • An example explains the impotance of assumption in L’Hospital’s Rule
  • Application of L’Hospital’s Rule
  • Limits involving the definition of the natural constant e
  • Interchange limits at zero and infinity
  • Compute limits using L’Hospital’s Rule III
15 6月, 2020
Basic properties of the countable direct sum of the integers
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.