Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Show an identity using known identities

Math 1年 前
Solution to Elementary Analysis: The Theory of Calculus Second Edition Section 1 Exercise 1.10


Solution: Recall from Exercise 1.4 that
\begin{equation}\label{eq:1-10-1}
1+3+\cdots+(2n-1)=n^2.
\end{equation} Note that
\begin{align*}
& (2n+1)+(2n+3)+\cdots+(4n-1)\\=&\ (1+3+5+\cdots+(4n-3)+(4n-1)) -(1+3+\cdots+(2n-1)).
\end{align*} Using \eqref{eq:1-10-1}, we find that
$$
1+3+5+\cdots+(4n-3)+(4n-1)=(2n)^2=4n^2,
$$ and
$$
1+3+\cdots+(2n-1)=n^2.
$$ Therefore
$$
(2n+1)+(2n+3)+\cdots+(4n-1)=4n^2-n^2=3n^2.
$$

#Identity#Induction
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • An example explains the impotance of assumption in L’Hospital’s Rule
  • Application of L’Hospital’s Rule
  • Limits involving the definition of the natural constant e
  • Interchange limits at zero and infinity
  • Compute limits using L’Hospital’s Rule III
25 4月, 2021
Determine if these real numbers are rational I
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.