Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Solution to Mathematics for Machine Learning Exercise 3.2

Math 2年 前

Consider $\mathbb R^2$ with $\langle ,\rangle$ defined for all $\mathbf x$ and $\mathbf y$ in $\mathbb R^2$ as $$\langle \mathbf x,\mathbf y\rangle :=\mathbf x^\top\mathbf A\mathbf y,\quad \mathbf A:=\begin{bmatrix}2 & 0\\ 1 & 2\end{bmatrix} .$$Is $\langle ,\rangle$ an inner product?


Solution: Let $\mathbf x=[x_1,x_2]^\top$, $\mathbf y=[y_1,y_2]^\top$. By direct computations, we have $$\langle \mathbf x,\mathbf y\rangle=2x_1y_1+x_2y_1+2x_2y_2$$ and $$\langle \mathbf y,\mathbf x\rangle=2x_1y_1+y_2x_1+2x_2y_2.$$Therefore, in general, we see that $\langle \mathbf x,\mathbf y\rangle \ne \langle \mathbf y,\mathbf x\rangle$. This implies that $\langle ,\rangle$ is not an inner product.

#Inner product
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • Check if a form is an inner product
  • Solution to Mathematics for Machine Learning Exercise 4.12
  • Solution to Mathematics for Machine Learning Exercise 2.6
  • Solution to Mathematics for Machine Learning Exercise 7.7
  • Solution to Mathematics for Machine Learning Exercise 7.6
01 6月, 2016
Chapter 6 Exercise A
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.