Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Solution to Mathematics for Machine Learning Exercise 5.2

Math 2年 前

Compute the derivative $f’(x)$ of the logistic sigmoid $$f(x)=\frac{1}{1+\exp(-x)}.$$


Solution: By Chain rule (5.32), we have $$(1+\exp(-x))’=0+\exp(-x)(-x)’=-\exp(-x).$$ By the Quotient rule (5.30), we have\begin{align*}f’(x)=&\ \frac{(1)’(1+\exp(-x))-1(1+\exp(-x))’}{(1+\exp(-x))^2}\\=&\ \frac{0(1+\exp(-x))-(-\exp(-x))}{(1+\exp(-x))^2}\\=&\ \frac{\exp(-x)}{(1+\exp(-x))^2}.\end{align*}


#Derivative#Quotient rule
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • An example explains the impotance of assumption in L’Hospital’s Rule
  • Application of L’Hospital’s Rule
  • Limits involving the definition of the natural constant e
  • Compute limits using L’Hospital’s Rule III
  • Compute limits using L’Hospital’s Rule II
03 10月, 2020
The ring homomorphic image of an ideal is an ideal
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.