Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

2×2 invertible upper triangular matrices form a subgroup of general linear group

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 1.4 Exercise 1.4.10
Let $G = \left\{ \left[{a \atop 0} {b \atop c}\right] \ |\ a,b,c \in \mathbb{R}, a \neq 0, c \neq 0 \right\}$.
(1) Show that $G$ is closed under matrix multiplication.
(2) Find the inverse of an arbitrary $G$ element and show that $G$ is closed under inverses.
(3) Deduce that $G$ is a subgroup of $GL_2(\mathbb{R})$.
(4) Prove that the set of all matrices in $G$ with $a = c$ is also a subgroup of $GL_2(\mathbb{R})$.


Solution:
(1) Let $A = \left[{a_1 \atop 0} {b_1 \atop c_1}\right]$, $B = \left[{a_2 \atop 0} {b_2 \atop c_2}\right] \in G$. Then $$AB = \left[{a_1a_2 \atop 0} {a_1b_2 + b_1c_2 \atop c_1c_2}\right],$$ which is also in $G$. So $G$ is closed under matrix multiplication.
(2) Let $A = \left[{a \atop 0} {b \atop c}\right] \in G$. Note that $$B = \left[{a^{-1} \atop 0} {\frac{-b}{ac} \atop c^{-1}}\right] \in G,$$ and that $AB = I$. Thus $G$ is closed under inversion.
(3) Since the identity matrix is in $G$, $G$ is nonempty. Thus $G$ is a subgroup of $GL_2(\mathbb{R})$.
(4) Consider the subset $H \subseteq G$ consisting of those matrices whose diagonal entries are equal. We can see by the above calculations that $H$ is also closed under matrix multiplication and inversion, so that $H$ is a subgroup of both $G$ and $GL_2(\mathbb{R})$.

#General Linear Group#Subgroup#Upper Triangular Matrix
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
28 6月, 2020
Finite subgroups with relatively prime orders intersect trivially
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.