Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

The set of all group automorphisms of a fixed group is a group

Math 2年 前
Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 1.6 Exercise 1.6.20

Let $G$ be a group and let $\mathsf{Aut}(G)$ be the set of all isomorphisms $G \rightarrow G$. Prove that $\mathsf{Aut}(G)$ is a group under function composition.


Solution: We need to verify that the three group axioms are satisfied: associativity, identity, and inverses.
(1) We know from set theory that function composition is always associative.
(2) Note that $\mathsf{id}_G$ is a bijection and trivially a homomorphism, so that $\mathsf{id}_G \in \mathsf{Aut}(G)$. Finally, we have $$\mathsf{id}_G \circ \varphi = \varphi \circ \mathsf{id}_G = \varphi$$ for all isomorphisms $\varphi : G \rightarrow G$, so that $\mathsf{id}_G$ is an identity element under composition.
(3) Given $\varphi \in \mathsf{Aut}(G)$, we know from set theory that an inverse $\varphi^{-1}$ exists. This inverse is a homomorphism, as we show. If $a,b \in G$, then $$\varphi(\varphi^{-1}(ab)) = ab = \varphi(\varphi^{-1}(a))\varphi(\varphi^{-1}(b)) = \varphi(\varphi^{-1}(a) \varphi^{-1}(b)).$$ Since $\varphi$ is injective, we have $$\varphi^{-1}(ab) = \varphi^{-1}(a) \varphi^{-1}(b).$$ Thus $\varphi^{-1}$ is a homomorphism, and we have $$\varphi \circ \varphi^{-1} = \varphi^{-1} \circ \varphi = \mathsf{id}_G.$$ Thus $\mathsf{Aut}(G)$ is a group under function composition.

#Automorphism Group#Composition#Group#Group Automorphism
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
26 5月, 2020
Compute the order of 5 in the integers mod a power of 2
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.