Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Examine a given action of the additive real numbers on the Cartesian plane

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 1.7 Exercise 1.7.3
Show that the additive group $\mathbb{R}$ acts on the $xy$-plane $\mathbb{R} \times \mathbb{R}$ by $r \cdot (x,y) = (x+ry,y)$.


Solution: Let $(x,y) \in \mathbb{R} \times \mathbb{R}$. We have $$0 \cdot (x,y) = (x + 0y,y) = (x,y).$$ Now let $r_1,r_2 \in \mathbb{R}$. Then \begin{align*}r_1 \cdot (r_2 \cdot (x,y)) = &\ r_1 \cdot (x + r_2 y, y)\\ =& \ (x + r_2 y + r_1 y, y) \\= & \ (x + (r_1 + r_2)y, y) \\=&\  (r_1 + r_2) \cdot (x,y).\end{align*}

#Direct Product#Group Action
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
26 4月, 2020
Solution to Mathematics for Machine Learning
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.