Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Compute the order of a stabilizer in Sym(n)

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 2.2 Exercise 2.2.8
Let $G = S_n$ and fix $i \in \{ 1, 2, \ldots, n \}$. Prove that $\mathsf{stab}_G(i)$ is a subgroup of $G$, and find $|\mathsf{stab}_G(i)|$.


Solution: Note that $\mathsf{stab}_G(i)$ is not empty since $1 \in \mathsf{stab}_G(i)$. Now suppose $\sigma$, $\tau \in \mathsf{stab}_G(i)$; we have $$(\sigma \circ \tau^{-1})(i) = \sigma(\tau^{-1}(i)) = \sigma(i) = i,$$ so that $\sigma \circ \tau^{-1} \in \mathsf{stab}_G(i)$. By the subgroup criterion, $\mathsf{stab}_G(i) \leq G$.
Now every permutation that fixes $i$ is a permutation of the remaining $n-1$ elements of the set $\{ 1, 2, \ldots, n \}$. There are $(n-1)!$ such permutations. Thus $|\mathsf{stab}_G(i)| = (n-1)!$.

#Cardinality#Stabilizer#Symmetric Group
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
25 4月, 2021
Using the principle of mathematical induction to show identities V
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.