Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Compute the order of a cyclic subgroup in Z/(54)

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 2.3 Exercise 2.3.10
What is the order of $\overline{30}$ in $\mathbb{Z}/(54)$? Write out all of the elements and their orders in $\langle \overline{30} \rangle$.


Solution: We know that $$|\overline{30}| = 54/\mathsf{gcd}(30,54) = 54/6 = 9.$$ The elements of $\langle \overline{30} \rangle$ are $$\{ \overline{30}, \overline{6}, \overline{36}, \overline{12}, \overline{42}, \overline{18}, \overline{48}, \overline{24}, \overline{0} \}.$$ The order of each element in $\langle \overline{30} \rangle$ is the same as its order in $\mathbb{Z}/(54)$. Thus we have the following. $$|\overline{30}| = 9$$ $$|\overline{6}| = 54/\mathsf{gcd}(6,54) = 54/6 = 9$$ $$|\overline{36}| = 54/\mathsf{gcd}(36,54) = 54/18 = 3$$ $$|\overline{12}| = 54/\mathsf{gcd}(12,54) = 54/6 = 9$$ $$|\overline{42}| = 54/\mathsf{gcd}(42,54) = 54/6 = 9$$ $$|\overline{18}| = 54/\mathsf{gcd}(18,54) = 54/18 = 3$$ $$|\overline{48}| = 54/\mathsf{gcd}(48,54) = 54/6 = 9$$ $$|\overline{24}| = 54/\mathsf{gcd}(24,54) = 54/6 = 9$$ $$|\overline{0}| = 1$$

#Cyclic Group#Order#Residue Group
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
25 4月, 2021
Rational numbers are closed under algebraic operations
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.