Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Basic properties of Hall subgroups

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 3.3 Exercise 3.3.10
Solution: We have $[HN:H \cap N] = [HN: H \cap N]$, so that $$[HN:N][N:H \cap N] = [HN:H][H:H \cap N].$$ By the Second Isomorphism Theorem, we have $[HN:N] = [H:H \cap N]$. Thus $[N:H \cap N] = [HN:H]$; because $HN \leq G$, we have that $[HN:H]$ divides $[G:H]$. Moreover, $|H \cap N|$ divides $|H|$. Thus $|H \cap N|$ and $[N:H \cap N]$ are relatively prime.
Now $[G:H] = [G:HN][HN:H]$, so that $[G:HN]$ divides $[G:H]$. By the Third Isomorphism Theorem, $[G:HN] = [G/N : HN/N]$, so that $[G:HN] = [G/N : HN/N]$ divides $[G:H]$. Now $$|HN| = |H| \cdot |N|/|H \cap N|,$$ so that $|HN/N| = |H|/|H \cap N|$. Thus $|HN/N|$ divides $|H|$, so that $|HN/N|$ and $[G/N : HN/N]$ are relatively prime.

#Group Isomorphism#Hall Subgroup#Normal Subgroup#Quotient
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
03 8月, 2016
Chapter 8 Exercise C
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.