Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

In the direct product of the quaternion group and an elementary abelian 2-group, all subgroups are normal

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 5.1 Exercise 5.1.6
Solution: Let $H \leq Q_8 \times E_{2^k}$ be a subgroup, and let $\alpha = (a,x) \in H$ and $\beta = (b,y) \in Q_8 \times E_{2^k}$. Since $E_{2^k}$ is abelian, we have $\beta\alpha\beta^{-1} = (bab^{-1}, x)$.
We saw previously that the conjugacy classes of $Q_8$ are $\{1\}$, $\{-1\}$, $\{i,-i\}$, $\{j,-j\}$, and $\{k,-k\}$. In particular, we have $bab^{-1} \in \{a, a^3\}$.
If $bab^{-1} = a$, then $\beta\alpha\beta^{-1} = (a,x) \in H$. If $bab^{-1} = a^3$, then (since every element of $E_{2^k}$ has order 2) $$\beta\alpha\beta^{-1} = (a^3,x) = (a^3, x^3) = (a,x)^3 \in H.$$ Thus $H$ is normal.

#Direct Product#Normal Subgroup#Quaternion Group
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
04 10月, 2020
Some more properties of ideal arithmetic
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.