Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Finite direct products are isomorphic up to permutation of the factors

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 5.1 Exercise 5.1.7
Solution: We need to show that $\varphi_\pi$ is a bijective homomorphism.
Homomorphism: Let $g = (g_i)$ and $h = (h_i)$. Then $$(\varphi_\pi(gh))_i = g_{\pi^{-1}(i)} h_{\pi^{-1}(i)} = (\varphi_\pi(g))_i (\varphi_\pi(h))_i$$ for each $i$; hence $\varphi_\pi(gh) = \varphi_\pi(g) \varphi_\pi(h)$.
Injective: Let $g = (g_i)$, $h = (h_i) \in \times_{i=1}^n G_i$ such that $\varphi_\pi(g) = \varphi_\pi(h)$. Then for each $i$, we have $$g_{\pi^{-1}(i)} = h_{\pi^{-1}(i)}.$$ Because $\pi$ is a permutation of $\{1,2,\ldots,n\}$, we have $g_i = h_i$ for each $i$; hence $g = h$. Thus $\varphi_\pi$ is injective.
Surjective: Let $g = (g_{\pi^{-1}(i)}) \in \times_{i=1}^k G_{\pi^{-1}(i)}$. It is clear that, with $g^\prime = (g_i)$, we have $\varphi_\pi(g^\prime) = g$. Thus $\varphi_\pi$ is surjective.

#Direct Product#Group Isomorphism#Permutation
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
30 9月, 2020
Homomorphic images of ring centers are central
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.