Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Construct elements of infinite multiplicative order in some quadratic integer rings

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.1 Exercise 7.1.24
Show that for $D \in \{ 3,5,6,7 \}$ the group of units in $\mathbb{Z}[\omega]$ is infinite by exhibiting an explicit unit of infinite multiplicative order.


Solution: We begin with a lemma.
Lemma: If $a + b\sqrt{D} \in \mathbb{Q}(\sqrt{D})$, where $D > 1$ is squarefree, $a > 1$, and $b \geq 1$, then $a + b \sqrt{D}$ has infinite multiplicative order in $\mathbb{Q}(\sqrt{D})$.
Proof: We prove by induction that if $(a+b\sqrt{D})^n = p + q \sqrt{D}$, then $p > 1$ and $q \geq 1$. The base case $n = 1$ holds by hypothesis. Now suppose $(a+b\sqrt{D})^n = p + q \sqrt{D}$, and that $p > 1$ and $q \geq 1$. Then$$ (a + b\sqrt{D})^{n+1} = (ap + bqD) + (aq + bp)\sqrt{D},$$ and we have $1 < p < ap + bqD$ and $1 \leq q < aq + bp$. By induction, $(a + b\sqrt{D})^n = 1 + 0\sqrt{D}$ has no solution $n$. $\square$
Using the lemma, it suffices to find, for each $D$, an element $a + b \sqrt{D}$ such that $a$ and $b$ are integers, $a > 1$, $b \geq 1$, and $$N(a+b\sqrt{D}) = a^2 - Db^2 = 1.$$For $D = 3$, note that $N(2 + \sqrt{3}) = 1$.
For $D = 5$, note that $N(9 + 4\sqrt{5}) = 1$.
For $D = 6$, note that $N(5 + 2 \sqrt{6}) = 1$.
For $D = 7$, note that $N(8 + 3 \sqrt{7}) = 1$.

#Quadratic Field#Quadratic Integer Ring
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
25 4月, 2021
Determine if a real number is rational using roots of polynomial III
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.