Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Compute in a group ring of symmetric group over Z/(3)

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.2 Exercise 7.2.11
Consider the following elements of the group ring $\mathbb{Z}/(3)[S_3]$: $$\alpha = 1(2\ 3) + 2(1\ 2\ 3),\quad \beta = 2(2\ 3) + 2(1\ 3\ 2).$$ Compute $\alpha + \beta$, $2\alpha - 3\beta$, $\alpha\beta$, $\beta\alpha$, and $\alpha^2$.


Solution: Evidently, $$\alpha + \beta = 2(1\ 2\ 3) + 2(1\ 3\ 2)$$ $$2\alpha - 3\beta = 2\alpha = 2(2\ 3) + (1\ 2\ 3)$$ $$\alpha\beta = 2(1\ 2) + 1(1\ 2\ 3)$$ $$\beta\alpha = 1(1\ 3) + 2(1\ 3\ 2)$$ $$\alpha^2 = 1(1) + 2(1\ 2) + 2(1\ 3) + 1(1\ 3\ 2)$$

#Group Ring#Symmetric Group
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
09 9月, 2020
Sym(A) acts on the set of all subsets of A having some fixed cardinality
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.