Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

The ring of formal power series over an integral domain is an integral domain

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.2 Exercise 7.2.4
Prove that if $R$ is an integral domain then the ring $R[[x]]$ of formal power series is also an integral domain.


Solution: Let $\alpha$ and $\beta$ be two nonzero elements in $R[[x]]$. Let $$\alpha=\sum_{n\geqslant 0}a_nx^n,\quad \beta=\sum_{n\geqslant 0}b_nx^n.$$Suppose $i$ is the smallest nonnegative integer $n$ such that $a_n\ne 0$ and $j$ is the smallest nonnegative integer $m$ such that $b_m\ne 0$. Then $a_i\ne 0$, $b_j\ne 0$ and $$\alpha=\sum_{n\geqslant i}a_nx^n,\quad \beta=\sum_{m\geqslant j}b_mx^m.$$Then it is clear that $$\alpha\beta=a_ib_jx^{i+j}+\text{terms with higher degree}.$$Because $R$ is an integral domain, we have $a_ib_j\ne 0$. So $\alpha\beta\ne 0$. Therefore the ring $R[[x]]$ of formal power series is also an integral domain.

#Formal Power Series#Integral Domain
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
26 5月, 2020
Group homomorphism from cyclic group is determined by the image of generator
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.