Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Characterize the ideals consisting of all matrices with a single nonzero column

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.4 Exercise 7.4.1
Solution: In Exercise 7.2.6, we saw that $AE_{i,j}$ is the matrix whose j-th column is the i-th column of $A$, and all other columns are zero. Now let $A \in L_j$, and define $B \in M_n(R)$ to be the matrix whose i-th column is the j-th column of $A$ and all other entries are 0. Then $BE_{i,j} = A$, and hence $A \in M_n(R) E_{i,j}$. Now let $AE_{i,j} \in M_n(R) E_{i,j}$; clearly then all entries off of the j-th column of $AE_{i,j}$ are zero. Thus $AE_{i,j} \in L_j$.

#Matrix Ring#One-side Ideal
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
03 10月, 2020
Verify that the set of complex numbers is a subfield of C
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.