Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

The nilradical of a commutative ring is contained in every prime ideal

Math 2年 前

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.4 Exercise 7.4.26
Solution:
Let $P \subseteq R$ be a prime ideal, and let $x \in R$ be nilpotent with $x^n = 0$. Let $1 \leq m \leq n$ be minimal such that $x^m \in P$. Note that $x^m + P = 0$ in $R/P$, which is an integral domain. If $m \geq 2$, we have $$(x + P)(x^{m-1} + P) = 0,$$ so that $x+P$ is a zero divisor in $R/P$, a contradiction. Thus we have $m = 1$, and $x \in P$. Thus $\mathfrak{N}(R) \subseteq P$, and moreover if $\mathfrak{P}(R)$ denotes the collection of all prime ideals of $R$, we have $\mathfrak{N}(R) \subseteq \bigcap \mathfrak{P}(R)$.

#Commutative Ring#Nilradical#Prime Ideal
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • The set of prime ideals of a commutative ring contains inclusion-minimal elements
  • Use Zorn’s Lemma to construct an ideal which maximally does not contain a given finitely generated ideal
  • Not every ideal is prime
  • Characterization of maximal ideals in the ring of all continuous real-valued functions
  • Definition and basic properties of the Jacobson radical of an ideal
03 6月, 2020
The Lattice Isomorphism Theorem
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.