Clanlu Clanlu
  • 请到 [后台->外观->菜单] 中设置菜单
  • 登录
现在登录。
  • 请到 [后台->外观->菜单] 中设置菜单

Find all solutions to the systems of equations by row-reducing (2)

Math 2年 前

Solution to Linear Algebra Hoffman & Kunze Chapter 1.3 Exercise 1.3.2
Solution: We have$$\rightarrow\left[\begin{array}{ccc}1&-3&0\\2&1&1\\3&-1&2\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&-3&0\\0&7&1\\0&8&2\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&-3&0\\0&1&1/7\\0&8&2\end{array}\right]$$ $$\rightarrow\left[\begin{array}{ccc}1&0&3/7\\0&1&1/7\\0&0&6/7\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&0&3/7\\0&1&1/7\\0&0&1\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&0&0\\0&1&1/7\\0&0&1\end{array}\right].$$Thus $A$ is row-equivalent to the identity matrix. It follows that the only solution to the system is $(0,0,0)$.

#Linear Equations
0
Math
O(∩_∩)O哈哈~
猜你喜欢
  • Non-degenerate form induces adjoint linear operators
  • Relation between non-degenerate forms and linear functionals
  • Form is left non-degenerate if and only if it is right non-degenerate
  • Form is non-degenerate if and only if the associated linear operator is non-singular
  • Diagonalize a symmetric matrix associated to a form
30 11月, 2017
Solution to Linear Algebra Hoffman & Kunze Chapter 6.6
精选标签
  • Subgroup 40
  • Order 37
  • Counterexample 36
Copyright © 2022 Clanlu. Designed by nicetheme.